Peter, N. J.; Liebscher, C.; Kirchlechner, C.; Dehm, G.: Ag segregation induced nanofaceting transition of an asymmetric tilt grain boundary in Cu and its impact on plastic deformation mechanisms. PICO 2019, Vaals, The Netherlands (2019)
Peter, N. J.; Kirchlechner, C.; Liebscher, C.; Dehm, G.: Effect of the atomistic grain boundary structure on dislocation interaction in copper. Gordon Research Conference (GRC) 2016, Thin Film & Small Scale Mechanical Behavior
, Lewiston, ME, USA (2016)
Peter, N. J.; Kirchlechner, C.; Liebscher, C.; Dehm, G.: Beam induced atomic migration at Ag containing nanofacets at an asymmetric Cu grain boundary. European Microscopy Congress (EMC) 2016
, Lyon, France (2016)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.