Moeremans, B.; Cheng, H.-W.; Merola, C.; Hu, Q.; Oezaslan, M.; Safari, M.; Van Bael, M. K.; Hardy, A.; Valtiner, M.; Renner, F. U.: In Situ Mechanical Analysis of the Nanoscopic Solid Electrolyte Interphase on Anodes of Li-Ion Batteries. Advanced Science 6 (16), 1900190 (2019)
Bach, P.; Seemayer, A.; Rütt, U.; Gutowski, O.; Renner, F. U.: Electrochemical Cells for In-Situ XRD Studies of Insertion and Extraction Mechanisms of Lithium in Anode Materials for Lithium Ion Batteries Tested at Aluminum Model Electrodes. ECS Transactions 53 (29), pp. 29 - 39 (2013)
Ankah, G. N.; Meimandi, S.; Renner, F. U.: Dealloying of Cu3Pd Single Crystal Surfaces. Journal of the Electrochemical Society 160 (8), pp. C390 - C395 (2013)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.