Todorova, M.; Surendralal, S.; Deißenbeck, F.; Wippermann, S. M.; Neugebauer, J.: Insights into Electrified Solid/Liquid Interfaces from Ab initio and Atomistic Molecular Dynamics Simulations. CECAM - Young Researchers' School on Theory and Simulation in Electrochemical Conversion Processes, Paris, France (2023)
Todorova, M.; Surendralal, S.; Wippermann, S. M.; Deißenbeck, F.; Neugebauer, J.: Processes at solid/liquid interfaces – insights from ab initio molecular dynamics simulations with potential control. AMaSiS 2021 Online - Applied Mathematics and Simulation for Semiconductors and Electrochemical Systems, Berlin, Germany (2021)
Todorova, M.; Surendralal, S.; Wippermann, S. M.; Deißenbeck, F.; Neugebauer, J.: Insights into processes at electrochemical solid/liquid interfaces from ab initio molecular dynamics simulations. ICTP-Workshop on “Physics and Chemistry of Solid/Liquid Interfaces for Energy Conversion and Storage”, Virtual Meeting, Trieste, Italy (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…