Bhat, M. K.; Frommeyer, L.; Prithiv, T. S.; Dehm, G.; Best, J. P.: Using small-scale mechanics to probe the origins of segregation-induced strengthening. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Devulapalli, V.; Hans, M.; Prithiv, T. S.; Schneider, J. M.; Dehm, G.; Liebscher, C.: Unravelling the atomic structure and segregation of Ʃ13 [0001] tilt grain boundaries in titanium by advanced STEM. Microscopy Conference 2021 & Multinational Conference on Microscopy 2021, Vienna, Austria (2021)
Prithiv, T. S.: Grain boundary segregation of boron and carbon and their local chemical effects on the phase transformations in steels. Dissertation, Faculty of Georesources and Materials Engineering of the RWTH Aachen, Germany (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.