Hassel, A. W.; Seo, M.: Localised Photoelectrochemical Measurement with the Scanning Droplet Cell. Passivity and Localized Corrosion: International Symposium in Honor of Professor Norio Sato. Electrochem. Soc. Proc. PV 99-27, pp. 337 - 342 (1999)
Hassel, A. W.; Seo, M.: The Scanning Droplet Cell: Experimental Results and Determination of the Potential Distribution. Proceed. Japan Soc. Corr. Engineer. Mater. Environments 1998, pp. 293 - 296 (1998)
Hassel, A. W.: Elektronische und ionische Transportprozesse in ultradünnen Aluminiumoxidschichten. Oberflächentechnik '95, DGO Jahrestagung 33, pp. 31 - 34 (1995)
Venzlaff, H.; Enning, D.; Widdel, F.; Stratmann, M.; Hassel, A. W.: A new model for microbiologically influenced corrosion. The European Corrosion Congress Eurocorr 2010, Moscow, Russia (2010)
Mardare, A. I.; Ludwig, A.; Savan, A.; Wieck, A. D.; Hassel, A. W.: High throughput growth and in situ characterization of anodic oxides on Ti, Ta and Hf combinatorial alloys. “Electrochemistry: Crossing Boundaries”, GDCh, Gießen, Germany (2008)
Fenster, J. C.; Rohwerder, M.; Hassel, A. W.: Impedance-Titration: A Novel Method for Understanding the Kinetics of Corrosion in Aqueous Solutions. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spanien (2008)
Hassel, A. W.: Progress in the Electrochemical Processing of Directionally Solidified Eutectics. 7th International Symposium on Electrochemical Micro- and Nanosystems, Ein-Gedi, Israel (2008)
Hassel, A. W.; Milenkovic, S.; Smith, A. J.: Nanowires and Nanowire Arrays by an Electrochemical Structuring of Directionally Solidified Eutectics. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Mardare, A. I.; Wieck, A. D.; Hassel, A. W.: Combinatorial microelectrochemistry using an automated scanning droplet cell. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spanien (2008)
Stratmann, M.; Hassel, A. W.; Rohwerder, M.: Microelectrochemical Investigations of Interfaces and Surfaces of Advanced Materialks. 7th International Symposium on Electrochemical Micro- and Nanosystems, Ein-Gedi, Israel (2008)
Venzlaff, H.; Widdel, F.; Stratmann, M.; Hassel, A. W.: Microbial corrosion induced by a new highly aggressive SRB strain. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Hassel, A. W.: Tailoring of Nanostructured Alloys by Anodisation. International Smposium on Anodizing Science and Technology 2008, Rusutsu, Japan (2008)
Mardare, A. I.; Wieck, A. D.; Hassel, A. W.: High throughput synthesis and characterization of anodic oxides on valve metal combinatorial libraries. 2nd International IMPRS-SurMat Workshop on Surface and Interface Engineering in Advanced Materials, Bochum, Germany (2008)
Chen, Y.; Milenkovic, S.; Hassel, A. W.: Fabrication of Iso-oriented Gold Nanobelt Arrays from an Fe–Au Eutectoid. 9th International Conference on Nanostructured Materials, Rio de Janerio, Brazil (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…