Herrera, C.; Ponge, D.; Raabe, D.: Microstructural evolution during hot working of 1.4362 duplex stainless steel. 2nd International Symposium on Steel Science (ISSS 2009), Kyoto, Japan (2009)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Experimental study on orientation gradients and GNDs in ultrafine grained dual-phase steels. International Conference on Processing & Manufacturing of Advanced Materials (THERMEC 2009), Berlin, Germany (2009)
Nnamchi, P.; Ponge, D.; Raabe, D.; Barani, A.; Bruckner, G.; Krautschik, J.: Influence of the As-Cast Microstructure on the Evolution of the Hot Rolling Textures of Ferritic Stainless Steels with Different Compositions. 15th International Conference on the Textures of Materials (ICOTOM 15), Carnegie Mellon University Center, Pittsburgh, PA, USA (2008)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of Ultrafine Grained Ferrite/Martensite Dual Phase Steel by Large Strain Warm Deformation and Subsequent Intercritical Annealing. ISUGS 2007 (International Symposium on Ultrafine Grained Steels), Kitakyushu, Japan (2007)
Ardehali Barani, A.; Ponge, D.; Kaspar, R.: Improvement of Mechanical Properties of Spring Steels through Application of Thermomechanical Treatment. Steels for Cars and Trucks, Wiesbaden, Germany (2005)
Ardehali Barani, A.; Ponge, D.: Morphology of Martensite Formed From Recrystallized or Work-Hardened Austenite. Solid-Solid Phase Transformations in Inorganic Materials 2005 (PTM 2005), Phoenix, AZ, USA (2005)
Ardehali Barani, A.; Ponge, D.: Effect of Austenite Deformation on the Precipitation Behaviour of Si–Cr spring Steels During Tempering. Solid-Solid Phase Transformations in Inorganic Materials 2005 (PTM 2005), Phoenix, AZ, USA (2005)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Microstructure control and mechanical properties of ultrafine grained dual phase steels. Lecture: Osaka University, Osaka [Japan], December 24, 2008
Ponge, D.: Warmumformbarkeit von Stahl. Lecture: Kontaktstudium Werkstofftechnik Stahl, Teil III, Technologische Eigenschaften, Werkstoffausschuss im Stahlinstitut VDEh, Technische Universität Dortmund, June 22, 2008
Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of ultrafine grained dual phase steels. Lecture: National Institute for Materials Science (NIMS), Tsukuba, Japan, October 22, 2007
Storojeva, L.; Ponge, D.; Raabe, D.: Halbwarmwalzen als ein neues Produktionskonzept für Kohlenstoffstähle. Lecture: Max-Planck Hot Forming Conference, MPI für Eisenforschung GmbH, Düsseldorf, Germany, December 05, 2002
Sam, H. C.: Role of microstructure and environment on delayed fracture in a novel lightweight medium manganese steel. Master, Augsburg University (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…