Diehl, M.; Shanthraj, P.; Roters, F.; Raabe, D.: From Crystal Plasticity to Forming Simulations: The "Virtual Laboratory". M2i Conference "High Tech Materials: your world - our business", Sint Michielgestel, The Netherlands (2014)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Winter School 2014, Research Training Group 1483,
Karlsruher Intitut f. Technologie (KIT), Karlsruhe, Germany (2014)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Yan, D.; Tasan, C. C.; Ponge, D.; Diehl, M.; Roters, F.; Hartmaier, A.; Raabe, D.: Experimental-Numerical Analysis of Stress and Strain Partitioning in Dual Phase Steel. 10th Materials Day, Joint workshop of the Materials Research Department (MRD) and the IMPRS-SurMat, Bochum, Germany (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. 11th GAMM-Seminar on Microstructures, Essen, Germany (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Tasan, C. C.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2011)
Diehl, M.: High Resolution Crystal Plasticity Simulations. Dissertation, Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany (2015)
Diehl, M.: A Spectral Method Using Fast Fourier Transform to Solve Elastoviscoplastic Mechanical Boundary Value Problems. Diploma, TUM, München, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…