Surendralal, S.; Todorova, M.; Neugebauer, J.: The Mg(0001)/H2O interface studied by empirical potentials and density functional. DPG-Frühjahrstagung 2017, Dresden, Germany (2017)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Zn-ions in water: An ab initio molecular dynamics study. ICMR Workshop - Workshop on Charged Systems and Solid/Liquid Interfaces, University of California , Santa Barbara, USA (2015)
Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Zn-ions in water: An ab initio molecular dynamics study. ICMR Workshop - Advances in oxide materials: Preparation, properties, performance, University of California, Santa Barbara, CA, USA (2014)
Todorova, M.; Neugebauer, J.: Electrochemical Pourbaix phase diagrams from ab initio calculations. XLII CALPHAD Conference, San Sebastian, Spain (2013)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of oxidizing species with the Mg(0001) surface: The role of electrostatic contributions. Connecting electrochemical and water simulations: Status and future challenges, Ringberg, Germany (2013)
Todorova, M.; Neugebauer, J.: Extending the concept of semiconductor defect chemistry to electrochemistry. Connecting electrochemical and water simulations: Status and future challenges, Ringberg, Germany (2013)
Todorova, M.; Neugebauer, J.: Extending the concept of semiconductor defect chemistry to electrochemistry. Workshop "Connecting electrochemical and water simulations: Status and future challenges", San Sebastian, Spain (2013)
Todorova, M.: On the accuracy of ion hydration enegies - An ab-initio study. Gordon Research Conference ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2012)
Bauer, K.-D.; Todorova, M.; Hingerl, K.; Neugebauer, J.: Ab-initio Study on Liquid Metal Embrittlement in the Fe/Zn System. International Workshop on Ab initio Description of Iron and Steel (ADIS2012), Ringberg, Germany (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Palm, M.; Neugebauer, J.: Theoretical study of the environmental effect of H-containing gases on Fe–Al surfaces. International Meeting on Iron Aluminide Alloys, Lanzarote, Canary Island, Spain (2011)
Todorova, M.; Valtiner, M.; Neugebauer, J.: Stabilisation of polar ZnO(0001) surfaces in dry and humid environment. FIESTAE - Frontiers in Interface Science: Theory and Experiment, Berlin, Germany (2011)
Todorova, M.; Valtiner, M.; Grundmeier, G.; Neugebauer, J.: Temperature Stabilised surface reconstructions at polar ZnO(0001). Gordon Research Seminar ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2010)
Todorova, M.; Neugebauer, J.: Towards an ab initio description of corrosion. International Workshop on Ab initio Description of Iron and Steel (ADIS2008), Ringberg Castle, Germany (2008)
Surendralal, S.; Todorova, M.: Automated Calculations for Charged Point Defects in Magnesium Oxide and Iron Oxides. Master, Ruhr-Universität Bochum, GermanyRuhr-Universität Bochum, Bochum, Germany (2016)
Hübel, K.; Rohwerder, M.; Scheu, C.; Todorova, M.: Organizer of the workshop “Status and Future Challenges in Characterisation of Interfaces for Electrochemical Applications - Part 1” at the MPIE. (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.