Song, J.; Kostka, A.; Veehmayer, M.; Raabe, D.: Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Materials Science and Engineering A 528, pp. 2641 - 2647 (2011)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Structural characterization and analysis of interface formed by explosion cladding of titanium to low carbon steel. 19th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM), Moscow, Russia (2012)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Microstructure and properties of interfaces formed by explosion cladding of Ti-Steel. XXI Conference on Applied Crystallography, Zakopane, Poland (2009)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Microstructure and properties of interfaces formed by explosion cladding of Ti-Steel. XXI Conference on Applied Crystallography, Zakopane, Poland (2009)
Song, J.: Explosive Cladding of Titanium onto Low Carbon Steel. International SurMat Workshop, Department of Material Science and Engineering, Ruhr-Universität Bochum, Bochum, Germany (2008)
Song, J.: Microstructure and properties of interfaces formed by explosion cladding of Titanium to low Carbon steel. Dissertation, Ruhr-University Bochum, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…