Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Ab initio based prediction of phase diagrams: Application to magnetic shape-memory alloys. 9. Materialwissenschaftlicher Tag der Ruhr-Universtät Bochum, Bochum, Germany (2011)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Chemical Trends for Phase Transitions in Magnetic Shape Memory Alloys Derived from First Principles. International Conference on Ferromagnetic Shape-Memory Alloys, ICFSMA’11, Dresden, Germany (2011)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Chemical Trends for Phase Transitions in Magnetic Shape Memory Alloys Derived from First Principles. TMS2011, San Diego, CA, USA (2011)
Hickel, T.; Al-Zubi, A.; Uijttewaal, M.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. Multiscale Materials Modelling, Freiburg, Germany (2010)
Hickel, T.; Uijttewaal, M.; Al-Zubi, A.; Neugebauer, J.: Ab initio simulation of magnetic shape memory alloys: The interplay of magnetic and vibrational degrees of freedom. Oberseminar: Ultraschnelle Dynamik in Festkörpern und an Grenzflächen, Fakultät für Physik, Universtität Duisburg-Essen, Duisburg, Germany (2010)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Ab initio investigation of temperature dependent effects in magnetic shape memory Heusler alloys. SPP1239 Fokustreffen A "Fundamentals", Bonn, Germany (2009)
Dutta, B.; Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Prediction of chemical trends in the phase diagrams of magnetic shape memory alloys from first-principles calculations. International Workshop on Ab initio Description of Iron and Steel (ADIS2012), Ringberg, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…