Eumann, M.; Palm, M.; Sauthoff, G.: Iron-rich iron-aluminium-molybdenum alloys with strengthening intermetallic mu phase and R phase precipitates. Steel Research International 75 (1), pp. 62 - 73 (2004)
Herrmann, J.; Inden, G.; Sauthoff, G.: Deformation behaviour of iron-rich iron-aluminium alloys with ternary transition metal additions. Steel Research International 75, 5, pp. 339 - 342 (2004)
Herrmann, J.; Inden, G.; Sauthoff, G.: Microstructure and deformation behaviour of iron-rich iron-aluminium alloys with ternary carbon and silicon additions. Steel Research International 75, 5, pp. 343 - 352 (2004)
Löffler, F.; Palm, M.; Sauthoff, G.: Iron-Rich Iron-Titanium-Silicon Alloys with Strengthening Intermetallic Laves Phase Precipitates. steel research international 75 (11), pp. 766 - 772 (2004)
Palm, M.; Sauthoff, G.: Deformation Behaviour and Oxidation Resistance of Single-Phase and Two-Phase L21 Fe–Al–Ti Alloys. Intermetallics 12 (12), pp. 1345 - 1359 (2004)
Risanti, D. D.; Sauthoff, G.: Iron-aluminium-base alloys with strengthening Laves phase for structural applications at high temperatures. Materials Science Forum 475-479, pp. 865 - 868 (2004)
Schneider, A.; Sauthoff, G.: Iron-Aluminium Alloys with Strengthening Carbides and Intermetallic Phases for High-Temperature Applications. Steel Research International 75, 1, pp. 55 - 61 (2004)
Palm, M.; Preuhs, J.; Sauthoff, G.: Production scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application: Part II. Powder metallurgical production of bolts by hot isostatic pressing. Journal of Materials Processing Technology 136 (1-3), pp. 114 - 119 (2003)
Palm, M.; Preuhs, J.; Sauthoff, G.: Production-scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application: Part I. Production of master alloy remelt ingots and investment casting of combustor liner model panels. Journal of Materials Processing Technology 136 (1-3), pp. 105 - 113 (2003)
Palm, M.; Zhang, L.; Stein, F.; Sauthoff, G.: Phases and phase equilibria in the Al-rich part of the Al–Ti system above 900 °C. Intermetallics 10 (6), pp. 523 - 540 (2002)
von Keitz, A.; Sauthoff, G.: Laves phases for high temperatures - Part II: Stability and mechanical properties. Intermetallics 10, pp. 497 - 510 (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.