Mayrhofer, K. J. J.: Online investigation of the stability of electrode materials by coupling of SFC - ICP-MS. Seminar Talk at University of Ulm, Ulm, Germany (2011)
Mayrhofer, K. J. J.: Catalysis in electrochemical reactors - Fundamental investigations for real applications. Seminar talk at Fritz-Haber-Institut der MPG, Berlin, Germany (2011)
Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Schüth, F.; Mayrhofer, K. J. J.: Role of Support Interactions for Activity and Stability of Fuel Cell Catalysts. ACS 15th Annual Green Chemistry & Engineering Conference, Washington, D.C., USA (2011)
Mayrhofer, K. J. J.: Electrocatalysis of PEM fuel cell reactions – fundamental investigations for real applications. 9th European Symposium on Electrochemical Engineering, Chania, Greece (2011)
Mayrhofer, K. J. J.: Elektrochemische Hochdurchsatzuntersuchungen mit gekoppelter online Analytik. 4. Korrosionsschutz-Symposium - Korrosionsschutz durch Beschichtungen in Theorie und Praxis, Trent, Rügen (2011)
Mayrhofer, K. J. J.: IL-TEM for the investigation of nanoparticle corrosion. Seminar Talk at Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany (2011)
Mayrhofer, K. J. J.: Identical-Location Microscopy for the investigation of corrosion processes. 61st Annual Meeting of the International Society of Electrochemistry, Nice, France (2010)
Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J.: Electrochemical water based in-situ TEM: case study of platinum based nanoparticles potential- and time-dependent changes. IAM Nano 2015 , Hamburg, Germany (2015)
Geiger, S.; Cherevko, S.; Mayrhofer, K. J. J.: Platinum dissolution in presence of chlorides. 3rd Ertl Symposium on Surface Analysis and Dynamics
, Berlin, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…