Felten, M.; Lutz, A.; Aliramaji, S.; Zhang, S.; Scheu, C.; Schneider, J. M.; Zander, D.: The effect of Al on the corrosion resistance of binary Mg–Al solid solutions: Combining in-situ electrochemistry with combinatorial thin films. Electrochemistry Communications 164, 107749 (2024)
Felten, M.; Chaineux, V.; Zhang, S.; Tehranchi, A.; Hickel, T.; Scheu, C.; Spille, J.; Lipińska-Chwałek, M.; Mayer, J.; Berkels, B.et al.; Hans, M.; Greving, I.; Flenner, S.; Sefa, S.; Zander, D.: The effect of Laves phases and nano-precipitates on the electrochemical corrosion resistance of Mg–Al–Ca alloys under alkaline conditions. Journal of Magnesium and Alloys 12 (6), pp. 2447 - 2461 (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…