Scheu, C.: Grain growth and dewetting of thin Al films on (0001) Al2O3 substrates. 3 Phase, Interface, Component Systems (PICS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Marseille, France (accepted)
Scheu, C.: In-situ Transmission Electron Microscopy Observation of Heat-Induced Structural Changes of 3D Nb3O(OH) Networks. Electronic Materials and Applications 2017 (EMA), Orlando, FL, USA (2017)
Scheu, C.: Insights into structural and functional properties of Nb3O7(OH) and TiO2 nanoarrays. European Materials Research Society’s (EMRS) Fall Meeting, Warsaw, Poland (2016)
Scheu, C.: Transmission electron microscopy – a versatile tool to study the microstructure of HT-PEMFC. Materials Science 2016, Atlanta, GA, USA (2016)
Scheu, C.: Insights into structural and functional properties of nano-structured electrodes for energy and fuel generating devices. Talk at Helmholtz‐Zentrum Geesthacht, Geesthacht, Germany (2016)
Scheu, C.: Correlative STEM & Atom Probe Tomography (ATP): Insights in the k-carbide/austenite interface. Workshop on “New trends in electron microscopy”, Ringberg Castle, Kreuth am Tegernsee, Germany (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Insights into degradation processes in WO3-x based anodes of HT-PEMFCs via electron microscopic techniques. Fuel Cells Science and Technology 2016 , Glasgow, Scotland, UK (2016)
Folger, A.; Wisnet, A.; Scheu, C.: Defects in as-grown vs. annealed rutile titania nanowires and their effect on properties. EMC 2016, 16th European Microscopy Congress, Lyon, France (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Template-free synthesized high surface area 3D networks of Pt on WO3-x – a promising alternative for H2 oxidation in fuel cell application. 2016 MRS Fall Meeting, Boston, MA, USA (2016)
Hieke, S. W.; Dehm, G.; Scheu, C.: Investigation of solid state dewetting phenomena of epitaxial Al thin films on sapphire using electron microscopy. The 16th European Microscopy Congress (EMC 2016), Lyon, France (2016)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…