Kim, Y.-J.; Kim, H.; Kang, M.; Rhee, K.; Shin, S. Y.; Lee, S.: Correlation of microstructure, chip-forming properties, and dynamic torsional properties in free-machining steels. Metallurgical and Materials Transactions A 44 (10), pp. 4613 - 4625 (2013)
Shin, S. Y.: Effects of microstructure on tensile, charpy impact, and crack tip opening displacement properties of two API X80 pipeline steels. Metallurgical and Materials Transactions A 44 (6), pp. 2613 - 2624 (2013)
Sohn, S. S.; Han, S. Y.; Shin, S. Y.; Bae, J.; Lee, S.: Effects of microstructure and pre-strain on Bauschinger effect in API X70 and X80 linepipe steels. Metals and Materials International 19 (3), pp. 423 - 431 (2013)
Sohn, S. S.; Han, S. Y.; Shin, S. Y.; Bae, J.; Lee, S.: Analysis and estimation of the yield strength of API X70 and X80 linepipe steels by double-cycle simulation tests. Metals and Materials International 19 (3), pp. 377 - 388 (2013)
Kim, H.; Kang, M.; Shin, S. Y.; Lee, S.: Alligatoring phenomenon occurring during hot rolling of free-machining steel wire rods. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 568, pp. 8 - 19 (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…