Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.: Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochemistry Communications 13 (12), pp. 1533 - 1535 (2011)
Laska, C. A.; Rossrucker, L.; Klemm, S. O.; Pust, S. E.; Hüpkes, J.; Mayrhofer, K. J. J.: Die Kopplung von Elektrochemie mit zeitaufgelöster Elementanalytik am Beispiel der chemischen und elektrochemischen Oberflächentexturierung von ZnO-Dünnschichten. In: Tagungsband zur Jahrestagung der Gesellschaft für Korrosionsschutz e.V. 2013, pp. 118 - 128. Jahrestagung der Gesellschaft für Korrosionsschutz e.V. , Frankfurt am Main, Germany, November 12, 2013 - November 13, 2013. (2013)
Laska, C. A.: Development of a Scanning Flow Cell system with Dynamic Electrolyte Change for Fully Automated Parameter Screening. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.