Krüger, T.; Varnik, F.; Raabe, D.: Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Physical Review E 82 (025701) (2010)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Effect of aspect ratio on transverse diffusive broadening: A lattice Boltzmann study. Physical Review E 80 (1), pp. 016304-1 - 016304-9 (2009)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Transverse diffusive mixing of solutes in pressure driven microchannels: A Lattice Boltzmann study of the scaling laws. La Houille Blanche, International Water Journal 6, pp. 93 - 100 (2009)
Gross, M.; Varnik, F.; Raabe, D.: Fall and rise of small droplets on rough hydrophobic substrates. Europhysics Letters 88 (26002), pp. 26002-p1 - 26002-p6 (2009)
Varnik, F.; Raabe, D.: Scaling effects in microscale fluid flows at rough solid surfaces. Modeling and Simulation in Materials Science and Engineering 14, pp. 857 - 873 (2006)
Baschnagel, J.; Varnik, F.: Computer simulations of supercooled polymer melts in the bulk and in confined geometry. Journal of Physics: Condensed Matter 17 (32), pp. R851 - R953 (2005)
Varnik, F.; Bocquet, L.; Barrat, L.-J.: A study of the static yield stress in a binary Lennard-Jones glass. The Journal of Chemical Physics 120 (6), pp. 2788 - 2801 (2004)
Baschnagel, J.; Meyer, H.; Varnik, F.; Metzger, S.; Aichele, M.; Müller, M.; Binder, K.: Computer Simulations of Polymers close to Solid Interfaces: Some Selected Topics. Special Issue of Interface Science: Polymers at Interfaces 11, pp. 159 - 173 (2003)
Varnik, F.; Baschnagel, J.; Binder, K.; Mareschal, M.: Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function. European Physical Journal E 12 (167) (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…