Yamada, K.; Horiuchi, T.; Stein, F.; Miura, M.: Effect of Metastable Co3Nb on Microstructural Evolution in Co–Nb Binary Alloys. JIM Spring Meeting 2018, Chiba, Japan (2018)
Stein, F.; He, C.: About the Limits of Applicability of the Alkemade Theorem for the Construction of Ternary Liquidus Surfaces. CALPHAD XLVI Conference, Saint-Malo, France (2017)
Li, X.; Stein, F.: Coarsening of Lamellar Microstructures. 63rd Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2017)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Fracture Toughness of Hexagonal and Cubic NbCo2 Laves Phases. Nanobrücken 2017, European Nanomechanical Testing Conference, University of Manchester, Manchester, UK (2017)
Horiuchi, T.; Stein, F.; Abe, K.; Taniguchi, S.: Formation of Complex Intermetallic Phases from Supersaturated Co Solid Solution in a Co–3.9Nb Alloy. TMS 2017 Annual Meeting, San Diego, CA, USA (2017)
Stein, F.: Stability Competition between Laves Phase Polytypes. Escola Politécnica da Universidade de São Paulo, University Sao Paulo, Sao Paulo, Brazil (2016)
Stein, F.; Philips, N.: High-Temperature Phase Equilibria and Solidification Behaviour of Nb-rich Nb–Al–Fe Alloys. TOFA 2016, Discussion Meeting on Thermodynamics of Alloys, Santos, Brazil (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…