Nellessen, J.; Sandlöbes, S.; Raabe, D.: Low cycle fatigue in aluminum single and bi-crystals: On the influence of crystal orientation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 668, pp. 166 - 179 (2016)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in austenitic stainless steel studied by electron channelling contrast imaging. Acta Materialia 87, pp. 86 - 99 (2015)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in fcc materials studied by Electron Channeling Contrast Imaging. TMS 2015 - 144th Annual Meeting & Exhibition, Orlando, FL, USA (2015)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Systematic Investigation of the Influence of Strain Amplitude, Orientation and Cycle Number on the Dislocation Structures Formed during Low Cycle Fatigue. MSE 2014, Darmstadt, Germany (2014)
Nellessen, J.; Sandlöbes, S.; Raabe, D.: Systematic and efficient investigation of the influences on the dislocation structures formed during low cycle fatigue in austenitic stainless steel. Euromat 2013, Sevilla, Spain (2013)
Nellessen, J.: Effects of strain amplitude, cycle number and orientation on low cycle fatigue microstructures in austenitic stainless steel and aluminum. Dissertation, RWTH Aachen, Aachen, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…