Singh, M. P.; Woods, E.; Kim, S.-H.; Jung, C.; Aota, L. S.; Gault, B.: Facilitating the Systematic Nanoscale Study of Battery Materials by Atom Probe Tomography through in-situ Metal Coating. Batteries & Supercaps 7 (2), e202300403 (2023)
Zhu, Y.; Heo, T. W.; Rodriguez, J. N.; Weber, P. K.; Shi, R.; Baer, B. J.; Morgado, F. F.; Antonov, S.; Kweon, K. E.; Watkins, E. B.et al.; Savage, D. J.; Chapman, J. E.; Keilbart, N. D.; Song, Y.; Zhen, Q.; Gault, B.; Vogel, S. C.; Sen-Britain, S. T.; Shalloo, M. G.; Orme, C.; Bagge-Hansen, M.; Hahn, C.; Pham, T. A.; Macdonald, D. D.; Qiu, R. S.; Wood, B. C.: Hydriding of titanium: Recent trends and perspectives in advanced characterization and multiscale modeling. Current Opinion in Solid State and Materials Science 26, 101020 (2022)
Saksena, A.; Kubacka, D.; Gault, B.; Spieker, E.; Kontis, P.: The effect of γ matrix channel width on the compositional evolution in a multi-component nickel-based superalloy. Scripta Materialia 219, 114853 (2022)
Antonov, S.; Tan, Q.; Gault, B.: Hydride Formation and Deformation Mechanisms in Commercially Pure Titanium. Microscopy and Microanalysis 28 (S1), pp. 1634 - 1636 (2022)
Dubosq, R.; Schneider, D.; Zhou, X.; Gault, B.; Langelier, B.; Pleše, P.: Bubbles and atom clusters in rock melts: A chicken and egg problem. Journal of Volcanology and Geothermal Research 428, 107574 (2022)
Jenkins, B. M.; Haley, J.; Meier, M.; Jones, M. E.; Gault, B.; Burr, P. A.; Moody, M. P.; Grovenor, C. R. M.: Preliminary Atom Probe Tomography Evidence for Hydrogen Trapping at a β-Nb Second Phase Particle in a Neutron-irradiated Zirconium Alloy. Microscopy and Microanalysis 28 (S1), pp. 1658 - 1659 (2022)
Khanchandani, H.; Stephenson, L.; Raabe, D.; Zaefferer, S.; Gault, B.: Hydrogen/Deuterium Charging Methods for the Investigation of Site-Specific Microstructural Features by Atom Probe Tomography. Microscopy and Microanalysis 28 (S1), p. 1664 (2022)
Kim, S.-H.; El-Zoka, A.; Gault, B.: A Liquid Metal Encapsulation for Analyzing Porous Nanomaterials by Atom Probe Tomography. Microscopy and Microanalysis 28 (4), pp. 1198 - 1206 (2022)
Rousseau, L.; Maillet, J.-B.; Stephenson, L.; Gervais, B.; Gault, B.; Vurpillot, F.: Mysterious Field Evaporation Behavior of Hydrogen in Aluminium Based Material Analyzed with Atom Probe Tomography. Microscopy and Microanalysis 28 (S1), pp. 690 - 691 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.