Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.; Zambaldi, C.: 3D EBSD characterization and crystal plasticity FE simulation of the texture and microstructure below a nanoindent in Cu. Plasticity Conference 2006, Halifax, Canada (2006)
Raabe, D.: Recent Advances in Crystal Mechanics and Chitin Composites. Physics Colloquium at the Physics Department of the Technical University Dresden, Dresden, Germany (2006)
Godara, A.; Raabe, D.: Strain localization and microstructure evolution during plastic deformation of fiber reinforced polymer composites investigated by digital image correlation. Department Seminar, MPIE, Düsseldorf (Germany) (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: Orientation microscopy on electrodeposited samples. 13th Conference and Workshop on Electron Backscatter Diffraction, Oxford, UK (2006)
Raabe, D.: Advances in Constitutive Modeling in Crystal Plasticity FEM. Colloquium Lecture at the Department for Aeronautics at the Massachusetts Institute of Technology, Cambridge, USA (2006)
Godara, A.; Raabe, D.: Micromechanical behavior of thermoplastic matrix composites by digital image correlation. SAMPE Europe - Society for the Advancement of Material and Process Engineering (SAMPE 2006), Paris (2006)
Roters, F.; Ma, A.; Zaafarani, N.; Raabe, D.: Crystal plasticity FEM modeling at large scales and at small scales. GAMM annual meeting, Berlin, Germany (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.: Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. DPG Frühjahrstagung, Dresden, Germany (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: Characterization of microstructure and Texture of nanostructure electrodeposited NiCo samples by use of Electron Backscatter Diffraction (EBSD). DPG – Spring meeting, Dresden, Germany (2006)
Romano, P.; Barani, A.; Ponge, D.; Raabe, D.: Design of High-Strength Steels by microalloying and thermomechanical treatment. TMS 2006, San Antonio, TX, USA (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
The goal of this project is to optimize the orientation mapping technique using four-dimensional scanning transmission electron microscopy (4D STEM) in conjunction with precession electron diffraction (PED). The development of complementary metal oxide semiconductor (CMOS)-based cameras has revolutionized the capabilities in data acquisition due to…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…