Nikolov, S.; Raabe, D.: Hierarchical Modeling of the Elastistic Properties of Bone at Submicron Scales: The Role of Extrafibrillar Mineralization. Biophysical Journal 94, pp. 4220 - 4232 (2008)
Nikolov, S.; Lebensohn, R. A.; Raabe, D.: Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers. Journal of the Mechanics and Physics of Solids 54 (7), pp. 1350 - 1375 (2006)
Nikolov, S.; Han, C. S.; Raabe, D.: On the origin of size effects in small-strain elasticity of solid polymers. International Journal of Solids and Structures 44, pp. 1582 - 1592 (2006)
Han, C. S.; Nikolov, S.: Frank energy and size dependent deformation in polymer. 13th International Symposium on Plasticity and its Current Applications, Alaska [USA], June 02, 2007 - June 06, 2007., (2008)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.; Petrov, M.; Friak, M.; Neugebauer, J.; Lymperakis, L.; Ma, D.: Hierarchical modeling of the mechanical properties of lobster cuticle from nano‐ up to macroscale: The influence of the mineral content and the microstructure. In: Proceedings of MMM 2008 "Computational Modeling of biological and soft condensed matter systems", pp. 667 - 670. 4th International Conference on Multiscale Materials Modeling, Tallahassee, FL, USA, October 27, 2008 - October 31, 2008. Dep. of Scientific Computing, Florida State University, USA (2008)
Nikolov, S.; Roters, F.; Raabe, D.: A constitutive model with shear transformation zones plasticity and reptation-based viscoelasticity. 3th Int. Conference Multiscale Materials Modeling 2006, Freiburg, Germany, September 18, 2006 - September 22, 2006. (2006)
Nikolov, S.; Lebensohn, R. A.; Roters, F.; Raabe, D.; Ma, A.: Micromechanical modeling of large plastic deformation in semi-crystalline polymers. 12th International Symposium on Plasticity 2006, Halifax, Nova Scotia (Canada), July 17, 2006 - July 22, 2006. (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.