Khorrami, M. S.; Mianroodi, J. R.; Svendsen, B.: Finite-deformation phase-field microelasticity with application to dislocation core and reaction modeling in fcc crystals. Journal of the Mechanics and Physics of Solids 164, 104897 (2022)
Gierden, C.; Kochmann, J.; Waimann, J.; Svendsen, B.; Reese, S.: A Review of FE-FFT-Based Two-Scale Methods for Computational Modeling of Microstructure Evolution and Macroscopic Material Behavior. Archives of Computational Methods in Engineering 29, pp. 4115 - 4135 (2022)
Gierden, C.; Waimann, J.; Svendsen, B.; Reese, S.: A geometrically adapted reduced set of frequencies for a FFT-based microstructure simulation. Computer Methods in Applied Mechanics and Engineering 386, 114131 (2021)
Gierden, C.; Waimann, J.; Svendsen, B.; Reese, S.: FFT-based simulation using a reduced set of frequencies adapted to the underlying microstructure. Computer Methods in Materials Science 21 (1), pp. 51 - 58 (2021)
Shanthraj, P.; Liu, C.; Akbarian, A.; Svendsen, B.; Raabe, D.: Multi-component chemo-mechanics based on transport relations for the chemical potential. Computer Methods in Applied Mechanics and Engineering 365, 113029 (2020)
Mianroodi, J. R.; Svendsen, B.: Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals. Materials 13 (10), 2238 (2020)
Alipour, A.; Reese, S.; Svendsen, B.; Wulfinghoff, S.: A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2235), 20190581 (2020)
Svendsen, B.: Constitutive relations for polar continua based on statistical mechanics and spatial averaging. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2233), 20190407 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…