Song, J.; Kostka, A.; Veehmayer, M.; Raabe, D.: Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Materials Science and Engineering A 528, pp. 2641 - 2647 (2011)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Structural characterization and analysis of interface formed by explosion cladding of titanium to low carbon steel. 19th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM), Moscow, Russia (2012)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Microstructure and properties of interfaces formed by explosion cladding of Ti-Steel. XXI Conference on Applied Crystallography, Zakopane, Poland (2009)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Microstructure and properties of interfaces formed by explosion cladding of Ti-Steel. XXI Conference on Applied Crystallography, Zakopane, Poland (2009)
Song, J.: Explosive Cladding of Titanium onto Low Carbon Steel. International SurMat Workshop, Department of Material Science and Engineering, Ruhr-Universität Bochum, Bochum, Germany (2008)
Song, J.: Microstructure and properties of interfaces formed by explosion cladding of Titanium to low Carbon steel. Dissertation, Ruhr-University Bochum, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…