Stein, F.; Dovbenko, O. I.; Palm, M.: Phase Relations between Laves Phases in Transition Metal Systems - Case Studies: Co–Nb, Al–Co–Nb, Cr–Ti, Fe–Zr, Al–Fe–Zr. EUROMAT 2005, Prague, Czech Republic (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Phase Equilibria in the Al–Co–Nb Ternary System in the Vicinity of the Laves Phases. CALPHAD XXXIV, Maastricht, The Netherlands (2005)
Palm, M.: Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. 2nd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Toulouse, France (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Investigation of the Phase Equilibria in the Al–Co–Nb System. Preliminary Results. International Workshop "Laves Phases IV", MPI für Eisenforschung, Düsseldorf, Germany (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Investigation of the Phase Equilibria in the Al–Co–Nb System using Liquid-Solid Diffusion Couples. Preliminary Results. COST 535 Diffusion Couple Workshop, MPI für Eisenforschung, Düsseldorf, Germany (2004)
Stein, F.; Jiang, D.; Palm, M.; Sauthoff, G.: Laves Phase Polytypism in the Co–Nb System. TOFA 2004 - Discussion Meeting on Thermodynamics of Alloys, Wien, Austria (2004)
Palm, M.: Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPI für Eisenforschung. Düsseldorf, Germany (2004)
Palm, M.; Eumann, M.; Sauthoff, G.: Improving Properties of Fe-Al Based Alloys by Increasing the Stability Range of DO3/L21 Order. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf (2004)
Siggelkow, L.; Kreiner, G.; Palm, M.; Stein, F.: Synthese und Eigenschaften der intermetallischen Phasen Nb2Co7. Workshop "The Nature of Laves Phases VIII", Düsseldorf, Germany (2004)
Palm, M.: Determination and application of the Al–Ti and Al–Fe–Ti phase diagrams. Colloquium at ONERA / Colloquium at Universite de Rouen, Chatillon / Rouen, France (2003)
Stein, F.; Palm, M.; Sauthoff, G.: Structures and Stability of Laves Phases. TMS Annual Meeting - Intern. Symp. Intermetallic and Advanced Metallic Materials - A Symposium Dedicated to Dr. C. T. Li on His 65th Birthday, San Diego, CA, USA (2003)
Stein, F.; Sauthoff, G.; Palm, M.: Intermetallic Phases and Phase Equilibria in the Fe–Zr and Fe–Zr–Al Systems. Discussion Meeting on Thermodynamics of Alloys (TOFA 2002), Rome, Italy (2002)
Palm, M.; Sauthoff, G.: Characterization and Processing of an Advanced Intermetallic NiAl-Base Intermetallic Alloy for High-Temperature Applications. Structural Intermetallics 2001 (ISSI-3), Jackson Hole, Wyoming (2002)
Palm, M.: Evaluation of alloy systems for developing new intermetallic lightweight intermetallic materials. Colloquium at CIRIMAT-ENSIACET, Toulouse, France (2002)
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
In this project we study a new strategy for the theory-guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical approach in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys...
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.