Bieler, T. R.; Crimp, M. A.; Yang, Y.; Wang, L.; Eisenlohr, P.; Mason, D. E.; Liu, W.; Ice, G. E.: Strain Heterogeneity and Damage Nucleation at Grain Boundaries during Monotonic Deformation in Commercial Purity Titanium. Journal of Microscopy 61 (12), pp. 45 - 52 (2009)
Bieler, T. R.; Eisenlohr, P.; Roters, F.; Kumar, D.; Mason, D. E.; Crimp, M. A.; Raabe, D.: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. International Journal of Plasticity 25 (9), pp. 1655 - 1683 (2009)
Eisenlohr, P.; Milička, K.; Blum, W.: Dislocation glide velocity in creep of Mg-alloys derived from dip tests. Materials Science and Engineering A 510-511, pp. 393 - 397 (2009)
Eisenlohr, P.; Tjahjanto, D. D.; Hochrainer, T.; Roters, F.; Raabe, D.: Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes. International Journal of Materials Research 100 (4), pp. 500 - 509 (2009)
Kumar, P.; Kassner, M. E.; Blum, W.; Eisenlohr, P.; Langdon, T. G.: New observations on high-temperature creep at very low stresses. Materials Science and Engineering A 510-511, pp. 20 - 24 (2009)
Eisenlohr, P.; Sadrabadi, P.; Blum, W.: Quantifying the distributions of dislocation spacings and cell sizes. Journal of Materials Science 43, pp. 2700 - 2707 (2008)
Kumar, D.; Bieler, T. R.; Eisenlohr, P.; Mason, D. E.; Crimp, M. A.; Roters, F.; Raabe, D.: On Predicting Nucleation of Microcracks Due to Slip-Twin Interactions at Grain Boundaries in Duplex gamma-TiAl. Journal of Engineering and Materials Technology 130 (02), pp. 021012-1 - 021012-12 (2008)
Zeng, X. H.; Eisenlohr, P.; Blum, W.: Modelling the transition from strengthening to softening due to grain boundaries. Material Science and Engineering A 483-484, pp. 95 - 98 (2008)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Iso-Work-Rate Weighted-Taylor Homogenization Scheme for Multiphase Steels Assisted by Transformation-induced Plasticity Effect. Steel Research International 78 (10/11), pp. 777 - 783 (2007)
Eisenlohr, P.; Blum, W.: Bridging steady-state deformation behavior at low and high temperature by considering dislocation dipole annihilation. Material Science and Engineering A 400 - 401, pp. 175 - 181 (2005)
Eisenlohr, P.; Winning, M.; Blum, W.: Migration of subgrain boundaries under stress in bi- and multi-granular structures. Physica Status Solidi 200 (2), pp. 339 - 345 (2003)
Roters, F.; Eisenlohr, P.; Bieler, T. R.; Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010), 197 pp.
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, pp. 1347 - 1372 (Eds. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.