Kim, S.-H.; Shin, K.; Zhou, X.; Jung, C.; Kim, H. Y.; Pedrazzini, S.; Conroy, M.; Henkelman, G.; Gault, B.: Atom probe analysis of BaTiO3 enabled by metallic shielding. Scripta Materialia 229, 115370 (2023)
Aota, L. S.; Jung, C.; Zhang, S.; Kim, S.-H.; Gault, B.: Revealing Compositional Evolution of PdAu Electrocatalyst by Atom Probe Tomography. ACS Energy Letters 8 (6), pp. 2824 - 2830 (2023)
Bueno Villoro, R.; Zavanelli, D.; Jung, C.; Mattlat, D. A.; Naderloo, R. H.; Pérez, N. A.; Nielsch, K.; Snyder, G. J.; Scheu, C.; He, R.et al.; Zhang, S.: Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Advanced Energy Materials 13 (13), 2204321 (2023)
Kim, S.-H.; Jun, H.; Jang, K.; Choi, P.-P.; Gault, B.; Jung, C.: Exploring the Surface Segregation of Rh Dopants in PtNi Nanoparticles through Atom Probe Tomography Analysis. The Journal of Physical Chemistry C 127 (46), pp. 22721 - 22725 (2023)
Singh, M. P.; Woods, E.; Kim, S.-H.; Jung, C.; Aota, L. S.; Gault, B.: Facilitating the Systematic Nanoscale Study of Battery Materials by Atom Probe Tomography through in-situ Metal Coating. Batteries & Supercaps 7 (2), e202300403 (2023)
Jung, C.; Jun, H.; Jang, K.; Kim, S.-H.; Choi, P.-P.: Tracking the Mn Diffusion in the Carbon-Supported Nanoparticles Through the Collaborative Analysis of Atom Probe and Evaporation Simulation. Microscopy and Microanalysis 28 (6), pp. 1841 - 1850 (2022)
Zhang, S.; Yu, Y.; Jung, C.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ STEM observation of thermoelectric materials under heating and biasing conditions. The 6th joint Sino-German workshop on advanced & correlative electron microscopy of catalysts, quantum phenomena & soft matter, Bad Honnef, Germany (2024)
Zhang, S.; Yu, Y.; Jung, C.; Wang, Z.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ microstructural observation and electrical transport measurements of PbTe thermoelectrics by transmission electron microscopy. International Conference on Thermoelectrics ICT, Krakow, Poland (2024)
Bhat, M. K.; Brink, T.; Ding, H.; Jung, C.; Best, J. P.; Dehm, G.: Influence of the Structure and Chemistry of Σ5 Grain Boundaries on Microscale Strengthening in Cu Bicrystals. TMS Annual Meeting and Exhibition 2024, Orlando, FL, USA (2024)
Jung, C.: Understanding of the property-structure relationship for thermoelectric materials through advanced characterization. Korea Electrotechnology Research Institute, Changwon, South Korea (2023)
Jung, C.: Investigation of interface between CIGS and buffer layer using atom probe tomography. Korea Institute of Energy Research, Daejeon, South Korea (2023)
Jung, C.: NbCoSn based half-Heusler compounds through crystallization of amorphous precursors. Kyungpook National University, Daegu, South Korea (2023)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…