Peng, Z.; Choi, P.-P.; Gault, B.; Raabe, D.: Evaluation of analysis conditions for laser-pulsed atom probe tomography: example of cemented tungsten carbide. Microscopy and Microanalysis 23 (2), pp. 431 - 442 (2017)
Takahashi, J.; Kawakami, K.; Raabe, D.: Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe. Ultramicroscopy 175, pp. 105 - 110 (2017)
Oliveira, V. B.; Sandim, H. R. Z.; Raabe, D.: Abnormal grain growth in Eurofer-97 steel in the ferrite phase field. Journal of Nuclear Materials 485, pp. 23 - 38 (2017)
Diehl, M.; Wicke, M.; Shanthraj, P.; Roters, F.; Brueckner-Foit, A.; Raabe, D.: Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation. JOM-Journal of the Minerals Metals & Materials Society 69 (5), pp. 872 - 878 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.