Jang, K.; Kim, M.-Y.; Jung, C.; Kim, S.-H.; Choi, D.; Park, S.-C.; Scheu, C.; Choi, P.-P.: Direct Observation of Trace Elements in Barium Titanate of Multilayer Ceramic Capacitors Using Atom Probe Tomography. Microscopy and Microanalysis 30 (6), pp. 1047 - 1056 (2024)
Cheraparambil, H.; Vega-Paredes, M.; Scheu, C.; Weidenthaler, C.: Unraveling the Evolution of Dynamic Active Sites of LaNixFe1-xO3 Catalysts During OER. ACS Applied Materials & Interfaces 16 (17), pp. 21997 - 22006 (2024)
Onur, E.; Lee, J.; Aymerich-Armengol, R.; Lim, J.; Dai, Y.; Tüysüz, H.; Scheu, C.; Weidenthaler, C.: Exploring the Effects of the Photochromic Response and Crystallization on the Local Structure of Noncrystalline Niobium Oxide. ACS Applied Materials & Interfaces 16 (19), pp. 25136 - 25147 (2024)
Knezevic, M.; Hoang, T.-H.; Wang, C.; Johar, M.; Manjón, A. G.; Rauret, D. L.; Scheu, C.; Erard, M.; Berardan, D.; Arbiol, J.et al.; Colbeau-Justin, C.; Ghazzal, M. N.: Amplified Photoluminescence of CsPbX3 Perovskites Confined in Silica Film with a Chiral Nematic Structure. Advanced Materials Interfaces 11 (3), 2300636 (2024)
Vega-Paredes, M.; Scheu, C.; Aymerich Armengol, R.: Expanding the Potential of Identical Location Scanning Transmission Electron Microscopy for Gas Evolving Reactions: Stability of Rhenium Molybdenum Disulfide Nanocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials and Interfaces 15 (40), pp. 46895 - 46901 (2023)
Jung, C.; Zhang, S.; Cheng, N.; Scheu, C.; Yi, S.-H.; Choi, P.-P.: Effect of Heat Treatment Temperature on the Crystallization Behavior and Microstructural Evolution of Amorphous NbCo1.1Sn. ACS Applied Materials and Interfaces 15 (39), pp. 46064 - 46073 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…