Ramachandramoorthy, R.: High strain rate testing from micro-to-meso scale. MRS Spring 2021 Conference - In Situ Mechanical Testing of Materials at Small Length Scales, Modeling and Data Analysis Symposium, online (2021)
Ramachandramoorthy, R.: High strain rate micromechanics: Instrumentation and implementation. DGM - Arbeitskreis Rasterkraftmikroskopie und nanomechanische Methoden, online (2020)
Bellón Lara, B.; Lu, W.; Fang, X.; Dehm, G.; Ramachandramoorthy, R.: Effect of Defects on the Dynamic Compression of Strontium Titanate Micropillars. ECI Nanomechanical Testing in Materials Research and Development IX, Sicily, Italy (2024)
Ding, K.; Kalácska, S.; Sharma, A.; Jain, M.; Koelmans, W.; Schürch, P.; Dehm, G.; Michler, J. K.; Ramachandramoorthy, R.: Copper micro-honeycomb architectures: fabrication, characterization and high strain rate testing. ECI Nanomechanical Testing in Materials Research and Development IX, Giardini Naxos, Messina (Sicily), Italy (2024)
Kang, S. G.; Gainov, R. R.; Heussen, D.; Bieler, S.; Sun, Z.; Weinberg, K.; Dehm, G.; Ramachandramoorthy, R.: Green laser powder bed fusion based fabrication and rate-dependent mechanical properties of copper lattices. arXiv (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…