Schneider, A.; Zhang, J.: Orientation relationship between a ferritic matrix and k-phase (Fe3AlCx) precipitates formed during metal dusting of Fe–15Al. Intermetallics 13 (12), pp. 1332 - 1336 (2005)
Zhang, J.; Schneider, A.; Inden, G.: Cementite decomposition and coke gasification in He and H2–He gas mixtures. Corrosion Science 46 (3), pp. 667 - 679 (2004)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Deges, J.; Fischer, R.; Frommeyer, G.; Schneider, A.: Atom probe field ion microscopy investigations on the intermetallic Ni49.5Al49.5Re1 alloy. Surface and Interface Analysis 36, pp. 533 - 539 (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.: Investigation of nucleation mechanisms of recrystallization in warm rolled Fe3Al base alloys. Materials Science Forum 467-470, pp. 75 - 80 (2004)
Schneider, A.; Sauthoff, G.: Iron-Aluminium Alloys with Strengthening Carbides and Intermetallic Phases for High-Temperature Applications. Steel Research International 75, 1, pp. 55 - 61 (2004)
Schneider, A.; Zhang, J.: Metal dusting of ferritic Fe–Al–M–C (M=Ti, V, Nb, Ta) alloys in CO–H2–H2O gas mixtures at 650 °C. Materials and Corrosion 54 (10), pp. 778 - 784 (2003)
Zhang, J.; Schneider, A.; Inden, G.: Effect of Gas Composition on Cementite Decomposition and Coke Formation of Iron. Corrosion Science 45 (2), pp. 281 - 299 (2003)
Fischer, R.; Frommeyer, G.; Schneider, A.: APFIM investigations on site preferences, superdislocations, and antiphase boundaries in NiAl(Cr) with B2 superlattice structure. Materials Science and Engineering A 353, pp. 87 - 91 (2003)
Zhang, J.; Schneider, A.; Inden, G.: Characterisation of the coke formed during metal dusting of iron CO-H2-H2O gas mixtures. Corrosion Science 45, pp. 1329 - 1341 (2003)
Zhang, J.; Schneider, A.; Inden, G.: Coke formation during metal dusting of iron in CO–H2–H2O gas with high CO content. Materials Science and Corrosion 54, pp. 770 - 777 (2003)
Zhang, J.; Schneider, A.; Inden, G.: α-Fe layer formation during metal dusting of iron in CO-H2-H2O gas mixtures. Materials and Corrosion 54, pp. 763 - 769 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…