Bernst, R.; Spiegel, M.; Schneider, A.: Metal dusting of iron aluminium alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf, Germany (2004)
Falat, L.; Schneider, A.; Sauthoff, G.; Frommeyer, G.: Iron aluminium alloys with strengthening carbides and intermetallic phases for high-temperature applications. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf (2004)
Hassel, A. W.; Schneider, A.: Preparation and Characterisation of Rhenium Nano Electrode arrays. International Society of Electrochemistry, 2nd Spring meeting, Xiamen, China (2004)
Stein, F.; Schneider, A.; Frommeyer, G.: Quaternary Fe3Al-Based Alloys with Transition Metals: Effect of Alloying Additions on the Order-Disorder Transitions and the Mechanical Behaviour. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Treffen des Fachausschusses Intermetallische Phasen, MPI Eisenforschung, Düsseldorf (2004)
Schneider, A.; Zhang, J.; Bernst, R.; Inden, G.: Thermodynamics and kinetics of phase transformations during metal dusting of iron and iron-based alloys. CALPHAD XXXIII, Krakow, Poland (2004)
Schneider, A.: Computer-Simulation von Phasengleichgewichten und diffusionskontrollierten Phasenumwandlungen in Eisenbasislegierungen mit Thermo-Calc und DICTRA. Thermo-Calc-DICTRA Anwendertreffen, Aachen, Germany (2003)
Schneider, A.; Falat, L.; Sauthoff, G.; Frommeyer, G.: Microstructures and Mechanical Properties of Fe–Al–C and Fe–Al–M–C (M = Ti, V, Nb, Ta) Alloys. TMS Annual Meeting - Intern. Symp. Intermetallic and Advanced Metallic Materials - A Symposium Dedicated to Dr. C. T. Li on His 65th Birthday, San Diego, CA, USA (2003)
Schneider, A.; Grabke, H. J.: Effect of H2S on metal dusting. EFC-Workshop: Metal Dusting, Carburisation and Nitridation, Frankfurt a. M., Germany (2003)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Intern. Conf. on Strength of Materials (ICSMA 13), Budapest, Hungary (2003)
Zhang, J.; Schneider, A.; Inden, G.: Metal dusting of iron in CO–H2–H2O mixtures at 700 °C. EFC-Workshop: Metal Dusting, Carburisation and Nitridation, Frankfurt, Germany (2003)
Schneider, A.; Frommeyer, G.; Sauthoff, G.: Intermetallics for High-Temperature Applications - Needs and Prospects. Intern. Symp. Progress of Metal Science, Tokyo (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.