Lai, M.; Tasan, C. C.; Zhang, J.; Grabowski, B.; Huang, L.; Springer, H.; Raabe, D.: ω phase accommodated nano-twinning mechanism in Gum Metal: An ab initio study. 3rd International Workshop on Physics Based Material Models and Experimental Observations: Plasticity and Creep, Cesme/Izmir, Turkey (2014)
Springer, H.: A novel roll bonding methodology for the cross-scale analysis of phase properties and interac-tions in multiphase structural materials. MSE 2014, Darmstadt, Germany (2014)
Springer, H.; Kostka, A.: Verbinden von hochfestem Stahl mit einer Aluminiumlegierung durch Rührreibschweißen. 4. GKSS Workshop, Geesthacht, Germany (2009)
Springer, H.: Micromechanics of Materials Design and micromechanics of metal matrix composites and high-throughput mechanical test-ing for alloy design. Lecture: RWTH Aachen, SS 2016, Aachen, Germany, 2016
Springer, H.: Fundamental Research into the Role of Intermetallic Phases in Joining of Aluminium Alloys to Steel. Dissertation, Ruhr-University Bochum, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.