Senöz, C.; Evers, S.; Stratmann, M.; Rohwerder, M.: Scanning Kelvin Probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution. Electrochemistry Communucations 13 (12), pp. 1542 - 1545 (2011)
Leng, A.; Streckel, H.; Stratmann, M.: Corrigendum to ‘‘The delamination of polymeric coatings from steel. Part 2: First stage of delamination, effect of type and concentration of cations on delamination, chemical analysis of the interface’’ [Corros. Sci. 41 (1998) 579–597]. Corrosion Science 53 (10), p. 3455 - 3455 (2011)
Frenznick, S.; Swaminathan, S.; Stratmann, M.; Rohwerder, M.: A novel approach to determine high temperature wettability and interfacial reactions in liquid metal/solid interface. Bulletin of Materials Science 45 (8), pp. 2106 - 2111 (2010)
Rohwerder, M.; Isik-Uppenkamp, S.; Stratmann, M.: Application of SKP for in situ monitoring of ion mobility along insulator/insulator interfaces. Electrochimica Acta 54 (25), pp. 6058 - 6062 (2009)
Posner, R.; Titz, T.; Wapner, K.; Stratmann, M.; Grundmeier, G.: Transport processes of hydrated ions at polymer/oxide/metal interfaces. Part 2: Transport on oxide covered iron and zinc surfaces. Electrochimica Acta 54 (33), pp. 900 - 908 (2009)
Posner, R.; Wapner, K.; Stratmann, M.; Grundmeier, G.: Transport processes of hydrated ions on oxide covered iron and zinc surfaces and interfaces. Part 1: Transport at polymer/oxide/metal interfaces. Electrochimica Acta 54 (3), pp. 891 - 899 (2009)
Frenznick, S.; Stratmann, M.; Rohwerder, M.: A new advanced experimental setup for in-depth study of the interfacial reaction during reactive wetting. Review of Scientific Instruments 79 (4), 043901 (2008)
Eckhard, K.; Erichsen, T.; Stratmann, M.; Schuhmann, W.: Frequency-Dependent Alternating-Current Scanning Electrochemical Microscopy (4D AC-SECM) for Local Visualisation of Corrosion Sites. Chemistry – A European Journal 14 (13), pp. 3968 - 3976 (2008)
Hausbrand, R.; Stratmann, M.; Rohwerder, M.: The physical meaning of electrode potentials at metal surfaces and polymer/metal interfaces: Consequences for delamination. Journal of the Electrochemical Society 155 (7), pp. C369 - C379 (2008)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Structure and stability of adhesion promoting aminopropyl phosphonate layers at polymer/aluminium oxide interface. International Journal of Adhesion and Adhesives 28 (1-2), pp. 59 - 70 (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…