Rohwerder, M.; Grundmeier, G.; Stratmann, M.: Korrosion der Metalle. Lecture: Wahlpflichtvorlesung, Blockveranstaltung, SS 2006, Fakultät für Maschinenbau, Ruhr-Universität-Bochum, Germany
Khayatan, N.: Investigation of Key Parameters in Cathodic Delamination of Organic Coatings and Quantification of Their Role. Dissertation, Ruhr-Univesität Bochum, Fakultät Maschinenbau (2023)
Ganapathi, A.; Stratmann, M.: The hydrogen electrode in the “dry”: on the effect of electrode material and relative humidity. Dissertation, Ruhr-Universität Bochum, Fakultät für Maschinenbau (2022)
Yin, Y.: Self-heating coatings based on conducting polymer for intelligent corrosion protection. Dissertation, Ruhr-Universität Bochum, Fakultät für Maschinenbau (2022)
Corrêa da Silva, C.: Investigation of the kinetics of selective oxidation of iron model alloys during simulated. Dissertation, Ruhr-Universität Bochum (2020)
Uebel, M.: Release and transport of corrosion inhibitors in self-healing coatings for intelligent corrosion protection. Dissertation, Ruhr-Universität Bochum (2019)
Merz, A.: Investigation of the “Protection Zone”, a novel mechanism to inhibit delamination of composite organic coatings containing conducting polymer. Dissertation, Ruhr-Universität Bochum (2019)
Wu, C.-H.: The Principle and Applications of Scanning Kelvin Probe based Hydrogen Detection Technique on Pd-coated and Oxide Covered Surface. Dissertation, Ruhr-Universität Bochum (2019)
Dandapani, V.: Hydrogen Permeation based Potentiometry as a New Quantification Tool for Electrochemical Reactivity at Buried Interfaces and under Nanoscopic Electrolyte Layers. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2017)
Utzig, T.: A contribution to understanding interfacial adhesion based on molecular level knowledge. Dissertation, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, Germany (2016)
Beese-Vasbender, P. F.: From Microbially Induced Corrosion to Bioelectrical Energy Conversion - Electrochemical Characterization of Sulfate-Reducing Bacteria and Methanogenic Archaea. Dissertation, Fakultät für Chemie und Biochemie der Ruhr-Universität Bochum, Bochum, Germany (2014)
Bach, P.: Lithiation and delithiation mechanisms of model anodes for lithium ion batteries using the example of Au thin films: Correlation of electrochemical and in-situ high energy X-ray diffraction characterization. Dissertation, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany (2014)
Schuppert, A. K.: Combinatorial screening of fuel cell catalysts for the oxygen reduction reaction. Dissertation, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany (2014)
Topalov, A. A.: Design and implementation of an automated electrochemical flow system coupled with mass spectrometry for investigation of the dissolution behavior of platinum. Dissertation, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany (2014)
Klemm, J.: Element resolved corrosion analysis of stainless steel-type glass forming steels and the correlation to their microstructure. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2013)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…