Borodin, S.; Vogel, D.; Swaminathan, S.; Rohwerder, M.: Direct In-Situ Investigation of Selective Surface Oxidation During Recrystallization Annealing of a Binary Model Alloy. Oxidation of Metals 85 (1-2), pp. 51 - 63 (2016)
Merzlikin, S. V.; Borodin, S.; Vogel, D.; Rohwerder, M.: Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals. Talanta 136, pp. 108 - 113 (2015)
Chen, Y.; Schneider, P.; Liu, B. J.; Borodin, S.; Ren, B.; Erbe, A.: Electronic structure and morphology of dark oxide on zinc generated by electrochemical treatment. Physical Chemistry Chemical Physics 15 (24), pp. 9812 - 9822 (2013)
Senöz, C.; Borodin, S.; Stratmann, M.; Rohwerder, M.: In-situ detection of differences in the electrochemical activity of Al2Cu IMPs and investigation of their effect on FFC by scanning Kelvin probe force microscopy. Corrosion Science 58, pp. 307 - 314 (2012)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Stability and Reaction Sequence for High Temperature Oxidation Processes in Steels. Materials Science Forum 696, pp. 76 - 81 (2011)
Valtiner, M.; Torrelles, X.; Pareek, A.; Borodin, S.; Gies, H.; Grundmeier, G.: In situ Study of the Polar ZnO(0001)–Zn Surface in Alkaline Electrolytes. Journal of Physical Chemistry C 114 (36), pp. 15440 - 15447 (2010)
Mozalev, A.; Smith, A. J.; Borodin, S.; Plihauka, A.; Hassel, A. W.; Sakairi, M.; Takahashi, H.: Growth of multioxide planar film with the nanoscale inner structure via anodizing Al/Ta layers on Si. Electrochim. Acta 54, pp. 935 - 945 (2009)
Valtiner, M.; Borodin, S.; Grundmeier, G.: Stabilisation and acidic dissolution mechanism of single crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imaging and ex-situ LEED. Langmuir 24 (10), pp. 5350 - 5358 (2008)
Valtiner, M.; Borodin, S.; Grundmeier, G.: Preparation and characterisation of hydroxide stabilised ZnO(0001)-Zn-OH surfaces. Physical Chemistry Chemical Physics 9 (19), pp. 2406 - 2412 (2007)
Vogel, D.; Borodin, S.; Merzlikin, S. V.; Keil, P.; Rohwerder, M.: Near Ambient Pressure XPS studies on the oxide formation on Fe–2Mn during thermal treatment. ISHOC2014 - International Symposium on High-temperature Oxidation and Corrosion 2014, Hakodate, Hokkaido Japan (2014)
Rohwerder, M.; Borodin, S.; Vogel, A.; Vogel, D.: Investigation of the Fundamental Processes in the Internal Oxidation of Binary and Ternary Iron Based Alloys at Elevated Temperatures. 2014 ECS and SMEQ Joint Internat. Meeting, Cancun, Mexico (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…