Fenster, J. C.; Hassel, A. W.: Bestimmung der Stabilität von Zink und Zink-Magnesium-Legierungen in alkalischen Lösung mittels elektrochemischer Impedanzspektroskopie. GDCh Wissenschaftsforum 2007, Ulm, Germany (2007)
Mardare, A. I.; Borodin, S.; Rohwerder, M.; Wieck, A. D.; Hassel, A. W.: Gold nanoparticles growth and their embedding in thin anodic alumina. 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Mardare, A. I.; Wieck, A.D.; Hassel, A. W.: High throughput measurements using an automated scanning droplet cell. GDCh Wissenschaftsforum 2007, Ulm, Germany (2007)
Neelakantan, L.; Eggeler, G.; Hassel, A. W.: Electropolishing of NiTi and Surface Changes due to Phase Transformation. GDCh Wissenschaftsforum 2007, Ulm, Germany (2007)
Neelakantan, L.; Eggeler, G. F.; Hassel, A. W.: Electropolishing of NiTi - Insight its mechanism. 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Schölzel, M.; Scharnberg, M.; Adelung, R.; Hassel, A. W.: Kontaktwinkelmessungen an funktionalisierten, nanostrukturierten Metalloberflächen. GDCh Wissenschaftsforum 2007, Ulm, Germany (2007)
Asteman, H.; Lill, K. A.; Hassel, A. W.; Spiegel, M.: Preparation and electrochemical characterization by SDC of thin Cr2O3, Fe2O3 and (Cr, Fe)2O3 films thermally grown on Pt substrates. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Brittmann, S.; Smith, A. J.; Hassel, A. W.: Electrochemical Treatment of Silver-Copper and Lead Silver Directionally Solidified Eutectic Alloys for the Fabrication of Nanowires. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Bruder, K.; Hassel, A. W.; Mildner, B.; Diesing, D.: Differential Tunnel Resistance Measurements in Anodic Tantalum Oxide Films be-tween 50 K and 298 K. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Dönecke, K.; Hassel, A. W.; Stratmann, M.: Erosion-Corrosion and Repassivation of AISI 302 Stainless Steel in different Elec-trolytes after Multiple and Single Particle Impingements. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Fenster, J. C.; Rohwerder, M.; Hassel, A. W.: Intensity Modulated Photo Electrochemistry of Laser Irradiated Semiconductors. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Lill, K. A.; Fushimi, K.; Hassel, A. W.; Seo, M.: Investigations on the kinetics of single grains and grain boundaries by use of Scan-ning Electrochemical Microscopy (SECM). 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Mardare, A. I.; Lill, K. A.; Wieck, A.; Hassel, A. W.: 3D Scanning Setup for High Throughput Measurements. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.