Kaufhold, S.; Hassel, A. W.; Sanders, D.; Dohrmann, R.: Corrosion of high-level radioactive waste iron-canisters in contact with bentonite. Journal of Hazardous Materials 285, pp. 464 - 473 (2015)
Merzlikin, S. V.; Wildau, M.; Steinhoff, K. P.; Hassel, A. W.: Prove of hydrogen formation through direct potential measurements in the rolling slit during cold rolling. Metallurgical Research & Technology 111 (1), pp. 25 - 35 (2014)
Woldemedhin, M. T.; Raabe, D.; Hassel, A. W.: Characterization of thin anodic oxides of Ti–Nb alloys by electrochemical impedance spectroscopy. Electrochimica Acta 82, pp. 324 - 332 (2012)
Enning, D.; Venzlaff, H.; Garrelfs, J.; Dinh, H. T.; Meyer, V.; Mayrhofer, K. J. J.; Hassel, A. W.; Stratmann, M.; Widdel, F.: Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental Microbiology 14 (7), pp. 1772 - 1787 (2012)
Klemm, S. O.; Pust, S.; Hassel, A. W.; Hüpkes, J.; Mayrhofer, K. J. J.: Electrochemical texturing of Al-doped ZnO thin films for photovoltaic applications. J. Sol. State Electrochem. 16 (1), pp. 283 - 290 (2012)
Merzlikin, S. V.; Hassel, A. W.; Steinhoff, K. P.; Wildau, M.: An Investigation of the Different Methods of Removing Specimens for Hydrogen Analysis from Damaged Cold Finishing Rolls. Praktische Metallographie-Practical Metallography 48 (7), pp. 365 - 375 (2011)
Milenkovic, S.; Drensler, S.; Hassel, A. W.: A novel concept for the preparation of alloy nanowires. Physical Status Solidi A-Applications and Materials Science 208 (6), pp. 1259 - 1264 (2011)
Woldemedhin, M. T.; Raabe, D.; Hassel, A. W.: Grain boundary electrochemistry of beta-type Nb–Ti alloy using a scanning droplet cell. Physica Status Solidi A-Applications and Materials Science 208 (6), pp. 1246 - 1251 (2011)
Chen, Y.; Hassel, A. W.; Erbe, A.: Enhancement of the electrocatalytic activity of gold nanoparticles towards methanol oxidation. Electrocatalysis 2 (2), pp. 106 - 113 (2011)
Klemm, S. O.; Kollender, J. P.; Hassel, A. W.: Combinatorial corrosion study of the passivation of aluminium copper alloys. Corrosion Science 53 (1), pp. 1 - 6 (2011)
Klemm, S. O.; Schauer, J.-C.; Schuhmacher, B.; Hassel, A. W.: High throughput electrochemical screening and dissolution monitoring of Mg–Zn material libraries. Electrochim. Acta 56, pp. 9627 - 9636 (2011)
Mardare, A. I.; Ludwig, A.; Savan, A.; Wieck, A. D.; Hassel, A. W.: Combinatorial investigation of Hf–Ta thin films and their anodic oxides. Electrochim. Acta 55 (27), pp. 7884 - 7891 (2010)
Chen, Y.; Milenkovic, S.; Hassel, A. W.: Reactivity of Gold Nanobelts with Unique {110} Facets. A European Journal of Chemical Physics and Physical Chemistry 11 (13), pp. 2838 - 2843 (2010)
Hassel, A. W.; Bello-Rodriguez, B.; Smith, A. J.; Chen, Y.; Milenkovic, S.: Preparation and specific properties of single crystalline metallic nanowires. Physica Status Solidi B 247, pp. 2380 - 2392 (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…