Mayrhofer, K. J. J.: Online investigation of the stability of electrode materials by coupling of SFC - ICP-MS. Seminar Talk at University of Ulm, Ulm, Germany (2011)
Mayrhofer, K. J. J.: Catalysis in electrochemical reactors - Fundamental investigations for real applications. Seminar talk at Fritz-Haber-Institut der MPG, Berlin, Germany (2011)
Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Schüth, F.; Mayrhofer, K. J. J.: Role of Support Interactions for Activity and Stability of Fuel Cell Catalysts. ACS 15th Annual Green Chemistry & Engineering Conference, Washington, D.C., USA (2011)
Mayrhofer, K. J. J.: Electrocatalysis of PEM fuel cell reactions – fundamental investigations for real applications. 9th European Symposium on Electrochemical Engineering, Chania, Greece (2011)
Mayrhofer, K. J. J.: Elektrochemische Hochdurchsatzuntersuchungen mit gekoppelter online Analytik. 4. Korrosionsschutz-Symposium - Korrosionsschutz durch Beschichtungen in Theorie und Praxis, Trent, Rügen (2011)
Mayrhofer, K. J. J.: IL-TEM for the investigation of nanoparticle corrosion. Seminar Talk at Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany (2011)
Mayrhofer, K. J. J.: Identical-Location Microscopy for the investigation of corrosion processes. 61st Annual Meeting of the International Society of Electrochemistry, Nice, France (2010)
Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J.: Electrochemical water based in-situ TEM: case study of platinum based nanoparticles potential- and time-dependent changes. IAM Nano 2015 , Hamburg, Germany (2015)
Geiger, S.; Cherevko, S.; Mayrhofer, K. J. J.: Platinum dissolution in presence of chlorides. 3rd Ertl Symposium on Surface Analysis and Dynamics
, Berlin, Germany (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…