Dey, P.; Nazarov, R.; Yao, M.; Friák, M.; Hickel, T.; Neugebauer, J.: Adaptive C content in coherently strained kappa-carbides - An ab initio explanation of atom probe tomography data. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Dutta, B.; Körmann, F.; Hickel, T.; Neugebauer, J.: The itinerant coherent potential approximation for phonons: Role of fluctuations for systems with magnetic disorder. 2nd German-Austrian Workshop, Kirchdorf, Austria (2015)
Gupta, A.; Dutta, B.; Hickel, T.; Neugebauer, J.: Thermodynamic phase stability in the Al–Sc system using first principles methods. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Hickel, T.; Nazarov, R.; McEniry, E.; Dey, P.; Neugebauer, J.: Ab initio insights into the interaction of hydrogen with precipitates in steels. Workshop on Hydrogen Embrittlement and Sour Gas Corrosion 2015, Düsseldorf, Germany (2015)
Zendegani, A.; Körmann, F.; Hickel, T.; Neugebauer, J.: First-principles study of thermodynamic properties of the Q-phase in Al–Cu–Mg–Si. 2nd German-Austrian Workshop, Kirchdorf, Austria (2015)
Zhang, X.; Hickel, T.; Rogal, J.; Drautz, R.; Neugebauer, J.: Atomistic origin of structural modulations in Fe ultrathin films on Cu(001). 2nd German-Austrian Workshop, Kirchdorf, Austria (2015)
Hickel, T.: Understanding complex materials at finite temperatures by ab inito methods. Colloquium at Institut für Materialwissenschaft, Universtität Stuttgart, Stuttgart, Germany (2014)
Hickel, T.: Ab initio basierte Methoden der mechanismen-orientierten Werkstoffentwicklung. Colloquium at Salzgitter-Mannesmann-Forschung GmbH, Duisburg, Germany (2014)
Hickel, T.; Nazarov, R.; McEniry, E.; Dey, P.; Neugebauer, J.: Impact of light elements on interface properties in steels. CECAM workshop “Modeling Metal Failure Across Multiple Scales”, Lausanne, Switzerland (2014)
Hickel, T.: Understanding complex materials at finite temperatures by ab inito methods. Physikalisches Kolloquium der TU Chemnitz, Chemnitz, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.