Sato, H.; Zaefferer, S.: A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Materialia 57 (6), pp. 1931 - 1937 (2009)
Sato, H.; Zaefferer, S.; Watanabe, Y.: In-situ Observation of Butterfly-type Martensite in Fe-30mass%Ni Alloy during Tensile Test Using High-resolution EBSD. ISIJ International 49, pp. 1784 - 1791 (2009)
Zaefferer, S.; Sato, H.: Investigation of the formation mechanism of martensite plates in Fe-30%Ni by a high resolution orientation microscopy in SEM. ESOMAT 2006, Bochum (2006)
Sato, H.; Zaefferer, S.: A study on the crystal orientation relationship of butterfly martensite in an Fe30 % Ni alloy by 3-D EBSD-based orientation microscopy. Microscopy Conference 2005, Davos, Switzerland (2005)
Sato, H.; Zaefferer, S.: 3D-analysis of the crystal orientation relationship and growth process of lenticular martensite in Fe–30mass%Ni alloy. DPG Frühjahrstagung, Berlin, Germany (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.