Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of oxidizing species with the Mg(0001) surface: The role of electrostatic contributions. DPG Frühjahrstagung, Regensburg, Germany (2013)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of 2nd row high electron affinity elements with Mg(0001). DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Cheng, S.-T.: Ab-initio study on the corrosion of pure Mg and Mg-Zn systems. Faraday Discussions Corrosion Chemistry Meeting of the Royal Society of Chemistry, London, UK (2015)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of oxidizing species with the Mg(0001) surface: The role of electrostatic contributions. Connecting electrochemical and water simulations: Status and future challenges, Ringberg, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.