Dehm, G.; Jaya, B. N.; Raghavan, R.; Kirchlechner, C.: Probing deformation and fracture of materials with high spatial resolution. Euromat 2015 - Symposium on In-situ Micro- and Nano-mechanical, Characterization and Size Effects
, Warsaw, Poland (2015)
Malyar, N.; Kirchlechner, C.; Dehm, G.: Dislocation grain boundary interaction in bi-crystalline micro pillars studied by in situ SEM and in situ µLaue diffraction. ICM 12 - 12th International Conference on the Mechanical Behavior of Materials, Karlsruhe, Germany (2015)
Kirchlechner, C.; Malyar, N.; Imrich, P. J.; Dehm, G.: Plastische Verformung an Korngrenzen: Neue Einblicke durch miniaturisierte Zug- und Druckversuche. 11. Tagung Gefüge und Bruch (2015), Leoben, Austria (2015)
Malyar, N.; Dehm, G.; Kirchlechner, C.: Insights into dislocation slip transfer by µLaue diffraction. Arbeitskreis-Treffen der Deutschen Gesellschaft für Materialkunde (DGM) e.V. „Rasterkraftmikroskopie und nanomechanische Methoden“, Darmstadt, Germany (2015)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: The mechanical behavior of thin cobalt films on polyimide. Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, TU Darmstadt, Darmstadt, Germny (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Probing deformation and fracture of materials with high spatial resolution. EDSA 2015 – International Workshop on Stress Assisted Environmental Damage in Structural Materials, Chennai, India (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Are micro-fracture tests reliable? 2015 MRS Fall Meeting and Exhibit - Symposium T: Strength and Failure at the Micro and Nano-scale-From fundamentals to Applications
, Boston, MA, USA (2015)
Kirchlechner, C.: “What can we learn from X-ray µLaue diffraction and where do we need to be careful?”. Seminar Talk at Helmholtz-Zentrum Geesthacht, Geesthacht, Germany (2014)
Kirchlechner, C.: Local diffraction techniques to probe residual strains/stresses in materials. Theorie and Practice of Modern X-Ray Diffraction, Summer School, Ellwangen, Germany (2014)
Marx, V. M.; Cordill, M. J.; Kirchlechner, C.; Dehm, G.: In-situ stress measurements in thin films using synchrotron diffraction. Summer School: Theory and Practice of Modern Powder Diffraction, Tagungshaus Schönenberg, Ellwangen, Ellwangen, Germany (2014)
Kirchlechner, C.: New insights into the plasticity of micron sized objects by in situ µLaue diffraction. Lecture at Universität Münster, Münster, Germany (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Design and development of fracture property measurement techniques at the small scale. ICAMS (RUB), Bochum, Germany (2014)
Marx, V. M.; Kirchlechner, C.; Berger, J.; Cordill, M. J.; Dehm, G.: In-situ stress measurements in Cu films using synchrotron radiation. "Mechanical Issues for Flexible Electronics" Flex Workshop, Erich Schmid Institut, Leoben, Leoben, Austria (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…