Kobayashi, S.; Zambaldi, C.; Raabe, D.: Orientation dependence of local lattice rotations at precipitates: Example of κ-Fe3AlC carbides in a Fe3Al-based alloy. Acta Materialia 58 (20), pp. 6672 - 6684 (2010)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative Importance of Nucleation vs. Growth for Recrystallisation in Particle-containing Fe3Al Alloys. Materials Science Forum 550, not specified, pp. 345 - 350 (2007)
Kobayashi, S.; Zaefferer, S.: Creation of Fine-grained and Deformed Structure with Fine Carbide Particles in a Fe3Al–Cr–Mo–C Alloy. Intermetallics 14 (10-11), pp. 1252 - 1256 (2006)
Kobayashi, S.; Demura, M.; Kishida, K.; Hirano, T.: Tensile and Bending Deformation of Ni3Al Heavily Cold-rolled Foil. Intermetallics 13, pp. 608 - 614 (2005)
Takeyama, M.; Kobayashi, S.: Physical Metallurgy for Wrought Gamma Titanium Aluminides: Microstructure Control through Phase Transformations. Intermetallics 13, pp. 993 - 999 (2005)
Tetsui, T.; Shindo, K.; Kaji, S.; Kobayashi, S.; Takeyama, M.: Fabrication of TiAl components by means of hot forging and machining. Intermetallics 13, pp. 971 - 978 (2005)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative importance of nucleation vs. growth for recrystallisation in particle-containing Fe3Al alloys. In: Fundamentals of Deformation and Annealing Symposium. Fundamentals of Deformation and Annealing Symposium. (2006)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Effect of the Degree of Order and the Deformation Microstructure on the Kinetics of Recrystallization in a Fe3Al Ordered Alloy. Materials Science Forum, pp. 153 - 158 (2004)
Kobayashi, S.; Zaefferer, S.: Determination of Phase Equilibria in the Fe3Al–Cr–Mo–C Semi-quaternary System Using a New Diffusion-multiple Technique. 12th International IUPAC Conference on High Temperature Materials Chemistry, Vienna, Austria (2006)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative Importance of Nucleation vs. Growth for Recrystallisation of Particle-containing Fe3Al Alloys. Fundamentals of Deformation and Annealing Symposium, Manchester, UK (2006)
Kobayashi, S.; Zaefferer, S.: Microstructure Control Using Phase Transformations in Ternary Gamma TiAl Alloys. Seminar talk, Universität Kassel, Kassel Germany (2006)
Kobayashi, S.; Zaefferer, S.: Optimisation of Precipitation for the Development of Heat Resistant Fe3Al-based Alloys. Seminar talk, National Institute for Materials Science (NIMS), Tsukuba, Japan (2006)
Kobayashi, S.; Zaefferer, S.: Optimization of Precipitation for the Development of Heat Resistant Iron Aluminides. Seminar talk, Oak Ridge National Laboratory, Tennessee USA (2005)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…