Warden, G. K.; Ebbinghaus, P.; Rabe, M.; Juel, M.; Gaweł, B. A.; Erbe, A.; Di Sabatino, M.: Investigation of uniformity in fused quartz crucibles for Czochralski silicon ingots. Journal of Crystal Growth 645, 127844 (2024)
Richter, R. A.; Tolstik, N.; Rigaud, S.; Dalla Valle, P.; Erbe, A.; Ebbinghaus, P.; Astrauskas, I.; Kalashnikov, V.; Sorokin, E.; Sorokina, I. T.: Sub-surface modifications in silicon with ultra-short pulsed lasers above 2 µm. Journal of the Optical Society of America B-Optical Physics 37 (9), pp. 2543 - 2556 (2020)
Folger, A.; Ebbinghaus, P.; Erbe, A.; Scheu, C.: Role of Vacancy Condensation in the Formation of Voids in Rutile TiO2 Nanowires. ACS Applied Materials and Interfaces 9 (15), pp. 13471 - 13479 (2017)
Xie, K.; Yang, F.; Ebbinghaus, P.; Erbe, A.; Muhler, M.; Xia, W.: A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. Journal of Energy Chemistry 24 (4), pp. 407 - 415 (2015)
Auinger, M.; Ebbinghaus, P.; Blümich, A.; Erbe, A.: Effect of surface roughness on optical heating of metals. Journal of the European Optical Society Rapid Publications 9, pp. 14004-1 - 14004-13 (2014)
Sun, Z.; Xie, K.; Li, Z. A.; Sinev, I.; Ebbinghaus, P.; Erbe, A.; Farle, M.; Schuhmann, W.; Muhler, M.; Ventosa, E.: Hollow and Yolk-Shell Iron Oxide Nanostructures on Few-Layer Graphene in Li-Ion Batteries. Chemistry  A European Journal 20, pp. 2022 - 2030 (2014)
Yliniemi, K.; Ebbinghaus, P.; Keil, P.; Kontturi, K.; Grundmeier, G.: Chemical composition and barrier properties of Ag nanoparticle-containing sol-gel films in oxidizing and reducing low-temperature plasmas. Surface & Coatings Technology 201 (18), pp. 7865 - 7872 (2007)
Grundmeier, G.; Rossenbeck, B.; Roschmann, K. J.; Ebbinghaus, P.; Stratmann, M.: Corrosion Protection of Zn-Phosphate Containing Water Borne Dispersion Coatings on Steel. Part 2: Corrosive de-adhesion of model films on iron substrates. Corrosion Science 48 (11), pp. 3716 - 3730 (2006)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…