Warden, G. K.; Ebbinghaus, P.; Rabe, M.; Juel, M.; Gaweł, B. A.; Erbe, A.; Di Sabatino, M.: Investigation of uniformity in fused quartz crucibles for Czochralski silicon ingots. Journal of Crystal Growth 645, 127844 (2024)
Richter, R. A.; Tolstik, N.; Rigaud, S.; Dalla Valle, P.; Erbe, A.; Ebbinghaus, P.; Astrauskas, I.; Kalashnikov, V.; Sorokin, E.; Sorokina, I. T.: Sub-surface modifications in silicon with ultra-short pulsed lasers above 2 µm. Journal of the Optical Society of America B-Optical Physics 37 (9), pp. 2543 - 2556 (2020)
Folger, A.; Ebbinghaus, P.; Erbe, A.; Scheu, C.: Role of Vacancy Condensation in the Formation of Voids in Rutile TiO2 Nanowires. ACS Applied Materials and Interfaces 9 (15), pp. 13471 - 13479 (2017)
Xie, K.; Yang, F.; Ebbinghaus, P.; Erbe, A.; Muhler, M.; Xia, W.: A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. Journal of Energy Chemistry 24 (4), pp. 407 - 415 (2015)
Auinger, M.; Ebbinghaus, P.; Blümich, A.; Erbe, A.: Effect of surface roughness on optical heating of metals. Journal of the European Optical Society Rapid Publications 9, pp. 14004-1 - 14004-13 (2014)
Sun, Z.; Xie, K.; Li, Z. A.; Sinev, I.; Ebbinghaus, P.; Erbe, A.; Farle, M.; Schuhmann, W.; Muhler, M.; Ventosa, E.: Hollow and Yolk-Shell Iron Oxide Nanostructures on Few-Layer Graphene in Li-Ion Batteries. Chemistry  A European Journal 20, pp. 2022 - 2030 (2014)
Yliniemi, K.; Ebbinghaus, P.; Keil, P.; Kontturi, K.; Grundmeier, G.: Chemical composition and barrier properties of Ag nanoparticle-containing sol-gel films in oxidizing and reducing low-temperature plasmas. Surface & Coatings Technology 201 (18), pp. 7865 - 7872 (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.