Tsai, S.-P.; Konijnenberg, P. J.; Gonzalez, I.; Hartke, S.; Griffiths, T. A.; Herbig, M.; Kawano-Miyata, K.; Taniyama, A.; Sano, N.; Zaefferer, S.: Development of a new, fully automated system for electron backscatter diffraction (EBSD)-based large volume three-dimensional microstructure mapping using serial sectioning by mechanical polishing, and its application to the analysis of special boundaries in 316L stainless steel. Review of Scientific Instruments 93, 093707 (2022)
An, D.; Griffiths, T. A.; Konijnenberg, P. J.; Mandal, S.; Wang, Z.; Zaefferer, S.: Correlating the five parameter grain boundary character distribution and the intergranular corrosion behaviour of a stainless steel using 3D orientation microscopy based on mechanical polishing serial sectioning. Acta Materialia 156, pp. 297 - 309 (2018)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.