Raabe, D.; Ge, J.: Experimental study on the thermal stability of Cr filaments in a Cu–Cr–Ag in situ composite. Scripta Materialia 51, pp. 915 - 920 (2004)
Raabe, D.; Roters, F.: Using texture components in crystal plasticity finite element simulations. International Journal of Plasticity 20, pp. 339 - 361 (2004)
Sandim, H. R. Z.; Sandim, M. J. R.; Bernardi, H. H.; Lins, J. F. C.; Raabe, D.: Annealing effects on the microstructure and texture of a multifilamentary Cu–Nb composite wire. Scripta Materialia 51, pp. 1099 - 1104 (2004)
Lima, E. B. F.; Pyzalla, A. R.; Reimers, W.; Kuo, J.-C.; Raabe, D.: Mosaic Size Distributions in an Aluminum Bi-crystal Deformed by Channel Die Plane Strain Compression. Journal of Neutron Research 11 (4), pp. 209 - 214 (2003)
Zaefferer, S.; Kuo, J. C.; Zhao, Z.; Winning, M.; Raabe, D.: On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Materialia 51, pp. 4719 - 4735 (2003)
Raabe, D.: Don’t trust your simulation - Computational materials science on its way to maturity? Advanced Engineering Materials 4 (5), pp. 255 - 267 (2002)
Raabe, D.; Zhao, Z.; Park, S. J.; Roters, F.: Theory of orientation gradients in plastically strained crystals. Acta Materialia 50 (2), pp. 421 - 440 (2002)
Park, S. J.; Han, H. N.; Oh, K. H.; Raabe, D.; Kim, J. K.: Finite element simulation of grain interaction and orientation fragmentation during plastic deformation of BCC metals. Proc. ICOTOM 13, pp. 371 - 376 (2002)
Raabe, D.: Cellular automata in materials science with particular reference to recrystallization simulation. Annual Review of Materials Research 32, pp. 53 - 76 (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…