Gault, B.; Shoji Aota, L.; Krämer, M.; Kim, S.-H.: From impurity ingress to high-performance doping: A perspective on atom probe tomography in energy materials. Scripta Materialia 262, 116648 (2025)
Kraemer, M.; Favelukis, B.; Sokol, M.; Rosen, B. A.; Eliaz, N.; Kim, S.-H.; Gault, B.: Facilitating Atom Probe Tomography of 2D MXene Films by In Situ Sputtering. Microscopy and Microanalysis 30 (6), pp. 1057 - 1065 (2024)
Sharma, V. M.; Svetlizky, D.; Das, M.; Tevet, O.; Krämer, M.; Kim, S.-H.; Gault, B.; Eliaz, N.: Microstructure and mechanical properties of bulk NiTi shape memory alloy fabricated using directed energy deposition. Additive Manufacturing 86, 104224 (2024)
Krämer, M.; Favelukis, B.; El-Zoka, A.; Sokol, M.; Rosen, B. A.; Eliaz, N.; Kim, S.-H.; Gault, B.: Near-Atomic Scale Perspective on the Oxidation of Ti3C2Tx MXenes: Insights from Atom Probe Tomography. Advanced Materials 23 (3), 2305183 (2024)
Krämer, M.; Favelukis, B.; El-Zoka, A.; Sokol, M.; A. Rosen, B.; Eliaz, N.; Kim, S.-H.; Gault, B.: Compositional mapping of 2D MXenes at the near-atomic-scale by atom probe tomography. EUROMXENE Congress 2024, Valencia, Spain (2024)
Krämer, M.; Favelukis, B.; Sokol, M.; Rosen, B. A.; Eliaz, N.; Kim, S.-H.; Gault, B.: Facilitating Atom Probe Tomography of Free-Standing 2D MXene Films. Atom Probe Tomography & Microscopy (APT&M) 2023, Leuven, Belgium (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.