Roters, F.; Diehl, M.; Shanthraj, P.: On the importance of using 3D microstructures in Crystal Plasticity Simulations. Symposium: 3D materials characterization at all length scales and its applications to iron and steel, Düsseldorf, Germany (2017)
Liu, C.; Diehl, M.; Shanthraj, P.; Roters, F.; Raabe, D.; Sandlöbes, S.; Dong, J.: An integrated crystal plasticity-phase field approach to locally predict twin formation in magnesium. DGM Meeting, "Herausforderungen bei der skalenübergreifenden Modellierung von Werkstoffen ", Regensburg, Germany (2017)
Roters, F.; Wong, S. L.; Shanthraj, P.; Diehl, M.; Raabe, D.: Thermo mechanically coupled simulation of high manganese TRIP/TWIP Steel. 5th International Conference on Material Modeling, ICMM 5, Rome, Italy (2017)
Diehl, M.: Deformation in polycrystals: Theory, implementation, and application of crystal plasticity. Seminar des Instituts für technische Mechanik, TU Clausthal, Clausthal, Germany (2017)
Diehl, M.; Cereceda, D.; Wong, S. L.; Reuber, J. C.; Roters, F.; Raabe, D.: From Phenomenological Descriptions to Physics-based Constitutive Models EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials. EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials
, Aberdeen, Scotland (2016)
Marian, J.; Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.: Unraveling the temperature dependence of the yield strength of tungsten single crystals using atomistically-informed crystal plasticity. 8th International Conference on Multiscale Materials Modeling, MMM2016, Dijon, France (2016)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Marian, J.: Unraveling the temperature dependence of the yield strength in BCC metals from atomistically-informed crystal plasticity calculation. Dislocations 2016, Purdue University, West Lafayette, IN, USA (2016)
Diehl, M.; Eisenlohr, P.; Shanthraj, P.; Roters, F.: Using the Spectral Solver. 5th International Symposium on Computational Mechanics of Polycrystals, CMCn 2016 and first DAMASK User Meeting, Düsseldorf, Germany (2016)
Diehl, M.; Naunheim, Y.; Morsdorf, L.; An, D.; Roters, F.; Raabe, D.: Crystal Plasticity Simulations on Real Data: Towards Highly Resolved 3D Microstructures. 26th International Workshop on Computational Mechanics of Materials - IWCMM 26, Tomsk, Russia (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.